Direct Numerical Simulation of Channel Flow with Transpired Wall

نویسنده

  • Y. Na
چکیده

The present work investigates turbulent velocity and temperature fields subject to strong wall injection in a channel using a Direct Numerical Simulation technique. A simplified model problem of the internal flows inside the hybrid rocket motors where a regression process at the wall is idealized by the wall blowing has been considered to gain a better understanding of how the turbulent structures are modified. Since the near-wall state of turbulence is likely to be modified due to the effect of wall blowing and the mean flow dynamics differ significantly from those in typical non-transpired channel flows, caution needs to be made when the RANS type calculations are to be performed. As the strength of wall blowing increases, the flow experiences stronger streamwsie acceleration or inhomogeneity and both the wall shear and friction temperature decrease significantly but many of higher order statistics such as turbulence intensities, turbulent heat flux, r.m.s. temperature fluctuations and Reynolds shear stress increase rapidly as the flow moves downstream and this is thought to result from the shear instability induced by wall injection. Also, turbulent viscosity and turbulent diffusivity grow rapidly. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling is required to predict this type of flows accurately. Keyword: Turbulent Flow, Wall Injection, Direct Numerical Simulation, Passive scalar, Turbulent Prandtl number

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMERICAL SIMULATION OF EFFECTS OF NON-IONIZED MASS INJECTION ON THE MHD FLOW IN A CIRCULAR CHANNEL

Control of a fluid velocity profile by injection and suction of non-ionized flow in presence of a uniform steady magnetic field has important technical applications. In this paper, the unsteady incompressible and viscous conducting fluid flow has been investigated in a circular channel. The channel wall has been assumed to be non-conducting and porous. It has been subjected to a uniform steady ...

متن کامل

Numerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES

Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...

متن کامل

شبیه سازی مستقیم عددی جریان آشفته توسعه یافته در کانال با شرط مرزی لغزش روی یکی از دیوارها

In this study, the results of a direct numerical simulation of turbulent drag reduction in a channel flow by hydrophobic coating at a nominal shear Reynolds number of Reτ = 180 are reported. Slip condition is imposed on the lower wall whereas the upper wall has no-slip condition. For this purpose, the use is made of a numerical simulation of three-dimensional, time-dependent Navier-Stokes e...

متن کامل

Numerical Simulation of Micropolar Flow in a Channel under Osciatory Pressure Gradient

We numerically investigate the pulsatile flow and heat transfer of a micropolar fluid through a Darcy-Forchhmeir porous channel in the presence of wall transpiration. We use the central difference approximations for the spatial derivatives, whereas the time integration has been performed by employing the three steps explicit Runge-Kutta method to obtain the numerical solution. It i...

متن کامل

Numerical simulation of nanofluids flow and heat transfer through isosceles triangular channels

Nanofluids are stable suspensions of nanoparticles in conventional heat transfer fluids (base fluids) that exhibit better thermal characteristics compared to those of the base fluids. It is important to clarify various aspects of nanofluids behavior. In order to identify the thermal and hydrodynamic behavior of nanofluids flowing through non-circular ducts, in the present study the laminar flow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006